RSS
当前位置 : 电脑维修 > 电脑维修 > 简述灰色系统方法

简述灰色系统方法

来源:未知 作者:老黑 时间:09-12-17 打印
简述灰色系统方法 灰色系统关联分析的具体计算步骤如下[17]:
(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列
反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。
(2)对参考数列和比较数列进行无量纲化处理
由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
(3)求参考数列与比较数列的灰色关联系数ξ(Xi)
所谓关联程度,实质上是曲线间几何形状的差别程度。因此曲线间差值大小,可作为关联程度的衡量尺度。对于一个参考数列X0有若干个比较数列X1, X2,…, Xn,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:

其中 ζ为分辨系数,0<ζ<1。
是第二级最小差,记为Δmin。 是两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。记为Δoi(k)。所以关联系数ξ(Xi)也可 fef 化如下列公式:

(4)求关联度ri
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:

(5)排关联序
因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣”关系。若r0i>r0j,则称{xi}对于同一母序列{x0}优于{xj},记为{xi}>{xj} ;若r0i表1 代表旗县参考数列、比较数列特征值。
灰色系统理论

一门研究信息部分清楚、部分不清楚并带有不确定性现象的应用数学学科。传统的系统理论,大部研究那些信息比较充分的系统。对一些信息比较贫乏的系统.利用黑箱的方法,也取得了较为成功的经验。但是,对一些内部信息部分确知、部分信息不确知的系统,却研究得很不充分。这一空白区便成为灰色系统理论的诞生地。在客观世界中,大量存在的不是白色系统(信息完全明确)也不是黑色系统(信息完全不明确),而是灰色系统。因此灰色系统理论以这种大量存在的灰色系统为研究而获得进一步发展。其基本证有:(1)灰色系统理论认为,系统是否会出现信息不完全的情况、取决于认识的层次、信息的层次和决策的层次,低层次系统的不确定量是相当的高层次系统的确定量,要充分利用已知的信息去揭示系统的规律。灰色系统理论在相对高层次上处理问题,其视野较为宽广;(2)应从事物的内部,从系统内部结构和参数去研究系统。灰色系统的内涵更为明确具体;(3)社会、经济等系统,一般部存在随机因素的干扰,这给系统分析带来了很大困难,但灰色系统理论把随机量看作是在一定范围内变化的灰色量,尽管存在着无规则的干扰成分.经过一定的技术处理总能发现它的规律性;(4)灰色系统用灰色数、灰色方程、灰色矩阵、灰色群等来描述,突破了原有方法的局限.更深刻地反映了事物的本质;(5)用灰色系统理论研究社会经济系统的意义,在于一反过去那种纯粹定性描述的方法,把问题具体化、量化,从变化规律不明显的情况中找出规律,并通过规律去分析事物的变化和发展。例如人体本身就是一个灰色系统,身高、体重、体型等是已知的可测量的指属于白色系统,而特异功能、穴位机理、意识流等又是未知的难以测量的,属黑色系统,介于此间便属灰色系统。体育领域也是一个巨大的灰色系统,可以用灰色系统理论来进行研究。这一理论是我国华中理工大学邓聚龙教授在1982年提出的.它是系统思想的一种深化和发展.该理论在国际上引起了很大的重视,并给予了很高的评价。当今的理论和方法广泛地应用于不同学科、不同领域的研究之中,获得了许多可喜的成果。

参考资料:http://zhidao.baidu.com/question/4214389.html?si=2&wtp=wk  
最新评论共有位网友发表了评论
发表评论
评论内容:不能超过250字,需审核,请自觉遵守互联网相关政策法规。
用户名: 密码:
匿名评论